skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aldrich, Alyssa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The use of cultured cells has been instrumental in studying biochemical, molecular, and cellular processes. The composition of serum that cells are maintained in can have a profound impact on important cellular checkpoints. Cell growth and apoptosis are analyzed in an estrogen receptor positive breast cancer cell line in the presence of serum that have been treated to remove steroids or lipids, as well‐described in the literature. It is shown that maintaining cells in the presence of charcoal‐dextran‐treated serum causes reduced growth rate, which can be reversed by the addition of estradiol. Silica‐treated‐serum also slows down cell growth and induces apoptosis. In order to investigate the role of lipids in these phenotypes, the levels of a wide range of lipids in different sera are investigated. It is shown that silica‐treatment significantly depletes phosphatidylcholines and cholesterol. It is also shown that lipogenesis is stimulated when cells are cultured with silica‐treated‐serum and this is reversed by the addition of exogenous lipids, which also restores growth rate and apoptosis. The results show that cultured cells are sensitive to different serum, most likely due to the differences in levels of structural and signaling metabolites present in their growth environment. 
    more » « less